Justus Perlwitz

transform()ing Like a Pro in Pandas

  1. Introduction

The Pandas API surprises me with a new feature or method almost every day, and I have yet again discovered an interesting piece of functionality. It turns out to be quite useful in some situations.

Using .transform(), you can, excuse the pun, transform the way you aggregate DataFrames. While not applicable to every use case in the split-apply-combine workflow, it makes one common task quite easy: Joining back aggregate values to the original DataFrame.

First, we shall create a sample DataFrame in order to then explore the various ways we can utilize .transform() in our Data Analysis work flow.

We import Pandas for DataFrame creation, random for generation of random data in our DataFrame, and datetime.datetime and datetime.timedelta for purchase date creation. We furthermore import Matplotlib to inspect the data.

import pandas as pd
import random
from datetime import datetime, timedelta

import matplotlib.pyplot as plt

Just while creating this notebook I was struggling with one thing in particular while playing around with DataFrame creation. DataFrames printed inside IPython are sometimes just too long and have too many rows. Just typing df and having a perfectly formatted HTML table of the head and tail of the DataFrame you want to inspect come out is just too convenient.

So naturally, I wondered whether there was any way to shorten the number of rows printed when evaluating a DataFrame. pandas.set_option to the rescue. The documentation has a full list of all options available, and one option that we find interesting in particular is max_rows. It determines the maximum amount of rows pandas will output when outputting truncated DataFrames. A DataFrame is truncated depending on how much space is available for printing it. In the case of the terminal, this is pretty easy to find out. Pandas just needs to see what the terminal’s character dimensions are. In the case of IPython and Jupyter, this is not so easy. There is no API available for determining the browser window dimensions inside Pandas. So we’re stuck with manually setting a value.

We choose 6 as the maximum number of rows, including the head and tail of a DataFrame.

pd.set_option('display.max_rows', 6)

Today’s DataFrame, readily filled with fake data, consists of the following data.

Since we want to keep it entertaining, the data we look at today is e-commerce purchase data. We look at a table containing purchase items, and data that is associated with them. The purchase items are linked to a specific order ID. One purchase can have several purchase items. To sum it up, we create the following columns.

random.seed(1)
category_names = [
    "Food",
    "Beverage",
    "Magazine",
]
start_date = datetime(2017, 1, 1)
rows = 100
df = pd.DataFrame(
    [
        [
            start_date + timedelta(
                days=random.randint(0, 30)
            ),
            random.choice(category_names),
            random.randint(10, 100),
            random.randint(1, 10),
            random.randint(1, 30),
        ]
        for _ in range(rows)
    ],
    columns=[
        "date",
        "category",
        "value",
        "customer",
        "purchase",
    ],
)
df.index.name = "item_id"
df

Output:

item_id date category value customer purchase
0 2017-01-05 Magazine 18 5 4
1 2017-01-16 Beverage 70 7 26
2 2017-01-07 Food 72 1 29
97 2017-01-30 Beverage 41 6 4
98 2017-01-18 Magazine 84 10 3
99 2017-01-08 Food 12 4 13

That should give us some useful purchase data to work with.

  1. The Problem

The other day I was working on an interesting problem that I could only solve in a cumbersome way with Pandas before. For each purchase in a similar DataFrame, I wanted to calculate a purchase item’s overall contribution to the total purchase value. So for example, if a customer bought two USD 10 items for a total value of USD 20, one purchase item would contribute 50 % to the total purchase value.

In order to find the total purchase value, we would typically use a group by together with a .sum(). Since we need to calculate the ratio of a purchase item’s value to the total purchase value, we would need to join that data back to the original DataFrame. Or at least, this is how I would have done it before finding out about .transform().

Let’s take it step by step and look at the necessary calculation steps. First, we need to group by a purchase ID and sum up the total purchase value. Therefore, we need to group by purchase and sum up the value column:

values = df.groupby('purchase').value.sum()
values.to_frame()

Output:

purchase value
2 146
3 398
4 377
28 89
29 329
30 63

What we get is a Pandas Series containing the total purchase values for every purchase ID. Since we used a group by on the purchase ID, purchase is the index of this Series. We can visualize this data with a bar plot.

fig, ax = plt.subplots(1, figsize=(20, 5))
values.plot(kind='bar', ax=ax)
fig

Output:

<img alt=“<matplotlib.figure.Figure at 0x1074f6710>” src=“ AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBo dHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3X+YZXV9H/D3R5aoiQmorEhYzBol ARMN2pXok9oaMAlKnmASf6aNxNCiEY1tTFJMfCr5YYs2SjVFLf5E6y+qJlBFEyOYaBvQVZEfLkZU DFCENSrG2piCn/5xz8CwLuzszpm9c/e8Xs8zz5z7veee+57ZnZl73vd7zqnuDgAAAADTdJd5BwAA AABgfpRDAAAAABOmHAIAAACYMOUQAAAAwIQphwAAAAAmTDkEAAAAMGHKIQAAAIAJUw4BAAAATJhy CAAAAGDCNsw7QJIcdNBBvXnz5nnHAAAAANhnfPzjH/9yd2/c1XrrohzavHlztm7dOu8YAAAAAPuM qvriStZzWBkAAADAhCmHAAAAACZMOQQAAAAwYcohAAAAgAlTDgEAAABMmHIIAAAAYMJWXA5V1X5V 9cmqes9w+/5VdXFVXVVV76iq7xrG7zrcvmq4f/PaRAcAAABgtXZn5tBzk2xbdvvFSc7o7gcm+WqS k4bxk5J8dRg/Y1gPAAAAgHVoReVQVW1KcnyS1w63K8kxSd45rHJ2kscPyycMtzPcf+ywPgAAAADr zEpnDv3nJL+d5NvD7Xsn+Vp33zzcvjbJocPyoUmuSZLh/puG9QEAAABYZ3ZZDlXVzya5sbs/PuYT V9XJVbW1qrZu3759zE0DAAAAsEIbVrDOTyT5uap6XJK7Jfm+JC9PcmBVbRhmB21Kct2w/nVJDkty bVVtSHJAkr/bcaPdfVaSs5Jky5YtvdovZF057YA12OZN428TAAAAmLxdzhzq7ud396bu3pzkKUku 6O5/keTCJE8YVjsxybnD8nnD7Qz3X9Dd+1b5AwAAALCP2J2rle3o3yX5jaq6KrNzCr1uGH9dknsP 47+R5NTVRQQAAABgrazksLJbdfeHknxoWP58kqN3ss4/JHniCNkAAAAAWGOrmTkEAAAAwIJTDgEA AABMmHIIAAAAYMKUQwAAAAATphwCAAAAmDDlEAAAAMCEKYcAAAAAJkw5BAAAADBhyiEAAACACVMO AQAAAEzYhnkHYD4efPaDR9/mZSdeNvo2AQAAgLVl5hAAAADAhCmHAAAAACZMOQQAAAAwYcohAAAA gAlTDgEAAABMmHIIAAAAYMKUQwAAAAATphwCAAAAmDDlEAAAAMCEKYcAAAAAJkw5BAAAADBhyiEA AACACVMOAQAAAEzYLsuhqrpbVX20qj5VVVdU1e8N42+sqi9U1SXDx1HDeFXVK6rqqqq6tKoettZf BAAAAAB7ZsMK1vlWkmO6+xtVtX+Sj1TV+4b7fqu737nD+o9Ncvjw8eNJXjV8BgAAAGCd2eXMoZ75 xnBz/+Gj7+QhJyR50/C4i5IcWFWHrD4qAAAAAGNb0TmHqmq/qrokyY1JPtDdFw93vWg4dOyMqrrr MHZokmuWPfzaYWzHbZ5cVVurauv27dtX8SUAAAAAsKdWVA519y3dfVSSTUmOrqofTfL8JEckeXiS eyX5d7vzxN19Vndv6e4tGzdu3M3YAAAAAIxht65W1t1fS3JhkuO6+/rh0LFvJXlDkqOH1a5Lctiy h20axgAAAABYZ1ZytbKNVXXgsHz3JD+V5Mql8whVVSV5fJLLh4ecl+Rpw1XLHpHkpu6+fk3SAwAA ALAqK7la2SFJzq6q/TIrk87p7vdU1QVVtTFJJbkkyTOH9c9P8rgkVyX5ZpKnjx8bAAAAgDHsshzq 7kuTPHQn48fcwfqd5JTVRwMAAABgre3WOYcAAAAA2LcohwAAAAAmTDkEAAAAMGHKIQAAAIAJUw4B AAAATJhyCAAAAGDClEMAAAAAE6YcAgAAAJiwDfMOAAAAALAnth1x5OjbPPLKbaNvc71TDgEAMDkv ffLPjr7N573jPaNvEwD2BoeVAQAAAEyYcggAAABgwpRDAAAAABPmnEMAAACsyOZT3zvq9q4+/fhR twfsGTOHAAAAACZMOQQAAAAwYcohAAAAgAlTDgEAAABMmHIIAAAAYMKUQwAAAAATphwCAAAAmDDl EAAAAMCEKYcAAAAAJmyX5VBV3a2qPlpVn6qqK6rq94bx+1fVxVV1VVW9o6q+axi/63D7quH+zWv7 JQAAAACwp1Yyc+hbSY7p7h9LclSS46rqEUlenOSM7n5gkq8mOWlY/6QkXx3GzxjWAwAAAGAd2mU5 1DPfGG7uP3x0kmOSvHMYPzvJ44flE4bbGe4/tqpqtMQAAAAAjGbDSlaqqv2SfDzJA5OcmeRzSb7W 3TcPq1yb5NBh+dAk1yRJd99cVTcluXeSL4+YGwBYJKcdMPL2bhp3ewAAE7aiE1J39y3dfVSSTUmO TnLEap+4qk6uqq1VtXX79u2r3RwAAAAAe2C3rlbW3V9LcmGSRyY5sKqWZh5tSnLdsHxdksOSZLj/ gCR/t5NtndXdW7p7y8aNG/cwPgAAAACrsZKrlW2sqgOH5bsn+akk2zIriZ4wrHZiknOH5fOG2xnu v6C7e8zQAAAAAIxjJeccOiTJ2cN5h+6S5Jzufk9VfTrJ26vqD5N8MsnrhvVfl+TNVXVVkq8kecoa 5AYAAABgBLssh7r70iQP3cn45zM7/9CO4/+Q5ImjpAMAAABgTe3WOYcAAAAA2LcohwAAAAAmTDkE AAAAMGHKIQAAAIAJUw4BAAAATJhyCAAAAGDClEMAAAAAE6YcAgAAAJgw5RAAAADAhCmHAAAAACZM OQQAAAAwYcohAAAAgAlTDgEAAABMmHIIAAAAYMI2zDsAANN03wsvGXV7X/rJo0bdHgAATIWZQwAA AAATphwCAAAAmDDlEAAAAMCEKYcAAAAAJkw5BAAAADBhyiEAAACACVMOAQAAAEyYcggAAABgwpRD AAAAABO2y3Koqg6rqgur6tNVdUVVPXcYP62qrquqS4aPxy17zPOr6qqq+kxV/cxafgEAAAAA7LkN K1jn5iTP6+5PVNX3Jvl4VX1guO+M7v6j5StX1YOSPCXJjyT5/iR/UVU/1N23jBkcAAAAgNXb5cyh 7r6+uz8xLP99km1JDr2Th5yQ5O3d/a3u/kKSq5IcPUZYAAAAAMa1W+ccqqrNSR6a5OJh6NlVdWlV vb6q7jmMHZrkmmUPuzY7KZOq6uSq2lpVW7dv377bwQEAAABYvRWXQ1V1jyTvSvJvuvvrSV6V5AFJ jkpyfZKX7s4Td/dZ3b2lu7ds3Lhxdx4KAAAAwEhWVA5V1f6ZFUNv6e53J0l339Ddt3T3t5O8Jrcd OnZdksOWPXzTMAYAAADAOrOSq5VVktcl2dbdL1s2fsiy1X4+yeXD8nlJnlJVd62q+yc5PMlHx4sM AAAAwFhWcrWyn0jyy0kuq6pLhrHfSfLUqjoqSSe5OskzkqS7r6iqc5J8OrMrnZ3iSmUAAAAA69Mu y6Hu/kiS2sld59/JY16U5EWryAUAAADAXrCSmUMAMEmbT33v6Nu8+vTjR98mAACsxm5dyh4AAACA fYtyCAAAAGDClEMAAAAAE6YcAgAAAJgw5RAAAADAhCmHAAAAACZMOQQAAAAwYcohAAAAgAnbMO8A AADAd7r21A+Pvs1Npz9q9G0CsPjMHAIAAACYMOUQAAAAwIQphwAAAAAmTDkEAAAAMGHKIQAAAIAJ Uw4BAAAATJhL2QPshtNOO20htgkAALBSZg4BAAAATJhyCAAAAGDCHFYGAADAPmPzqe8dfZtXn378 6NuE9UQ5BACwILYdceTo2zzyym2jbxMAWCwOKwMAAACYMOUQAAAAwITtshyqqsOq6sKq+nRVXVFV zx3G71VVH6iqzw6f7zmMV1W9oqquqqpLq+pha/1FAAAAALBnVjJz6OYkz+vuByV5RJJTqupBSU5N 8sHuPjzJB4fbSfLYJIcPHycnedXoqQEAAAAYxS7Loe6+vrs/MSz/fZJtSQ5NckKSs4fVzk7y+GH5 hCRv6pmLkhxYVYeMnhwAAACAVdutcw5V1eYkD01ycZKDu/v64a4vJTl4WD40yTXLHnbtMAYAAADA OrPicqiq7pHkXUn+TXd/ffl93d1JeneeuKpOrqqtVbV1+/btu/NQAAAAAEayonKoqvbPrBh6S3e/ exi+YelwseHzjcP4dUkOW/bwTcPY7XT3Wd29pbu3bNy4cU/zAwAAALAKK7laWSV5XZJt3f2yZXed l+TEYfnEJOcuG3/acNWyRyS5adnhZwAAAACsIxtWsM5PJPnlJJdV1SXD2O8kOT3JOVV1UpIvJnnS cN/5SR6X5Kok30zy9FETAwAAADCaXZZD3f2RJHUHdx+7k/U7ySmrzAUAAADAXrCSmUMAe8W1p354 1O1tOv1Ro24PAABgX7Rbl7IHAAAAYN+iHAIAAACYMOUQAAAAwIQphwAAAAAmTDkEAAAAMGHKIQAA AIAJcyl7AIAkDz77waNv87ITLxt9mwAAYzNzCAAAAGDClEMAAAAAE6YcAgAAAJgw5RAAAADAhCmH AAAAACZMOQQAAAAwYS5lDwAAAHvTaQeswTZvGn+bTIaZQwAAAAATphwCAAAAmDDlEAAAAMCEKYcA AAAAJkw5BAAAADBhyiEAAACACVMOAQAAAEyYcggAAABgwpRDAAAAABO2y3Koql5fVTdW1eXLxk6r quuq6pLh43HL7nt+VV1VVZ+pqp9Zq+AAAAAArN5KZg69MclxOxk/o7uPGj7OT5KqelCSpyT5keEx r6yq/cYKCwAAAMC4dlkOdfdfJfnKCrd3QpK3d/e3uvsLSa5KcvQq8gEAAACwhjas4rHPrqqnJdma 5Hnd/dUkhya5aNk61w5j36GqTk5ycpLc7373W0UMAACAxXbfCy8ZfZtf+smjRt8msG/a03LoVUn+ IEkPn1+a5Fd3ZwPdfVaSs5Jky5YtvYc5AACAOTrttNPW9fYA2LU9ulpZd9/Q3bd097eTvCa3HTp2 XZLDlq26aRgDAAAAYB3ao5lDVXVId18/3Pz5JEtXMjsvyVur6mVJvj/J4Uk+uuqUy2w+9b1jbi5X n378qNsDAAAAWCS7LIeq6m1JHp3koKq6NskLkzy6qo7K7LCyq5M8I0m6+4qqOifJp5PcnOSU7r5l baIDAAAAsFq7LIe6+6k7GX7dnaz/oiQvWk0oAAAAAPaOPTrnEAAAAAD7BuUQAAAAwIQphwAAAAAm TDkEAAAAMGHKIQAAAIAJ2+XVyoDF99In/+zo23zeO94z+jYBAADY+8wcAgAAAJgw5RAAAADAhCmH AAAAACZMOQQAAAAwYcohAAAAgAlTDgEAAABMmHIIAAAAYMKUQwAAAAATphwCAAAAmLAN8w4Ai+7M Z14w+jZPefUxo28TAAAAdsbMIQAAAIAJUw4BAAAATJhyCAAAAGDClEMAAAAAE6YcAgAAAJgwVysD 2Md88IIHjL7NY4/53OjbZBybT33v6Nu8+vTjR98mwDz52whw58wcAgAAAJiwXZZDVfX6qrqxqi5f NnavqvpAVX12+HzPYbyq6hVVdVVVXVpVD1vL8AAAAACszkpmDr0xyXE7jJ2a5IPdfXiSDw63k+Sx SQ4fPk5O8qpxYgIAAACwFnZZDnX3XyX5yg7DJyQ5e1g+O8njl42/qWcuSnJgVR0yVlgAAAAAxrWn 5xw6uLuvH5a/lOTgYfnQJNcsW+/aYQwAAACAdWjVJ6Tu7k7Su/u4qjq5qrZW1dbt27evNgYAAAAA e2BPy6Eblg4XGz7fOIxfl+SwZettGsa+Q3ef1d1bunvLxo0b9zAGAAAAAKuxp+XQeUlOHJZPTHLu svGnDVcte0SSm5YdfgYAAADAOrNhVytU1duSPDrJQVV1bZIXJjk9yTlVdVKSLyZ50rD6+Ukel+Sq JN9M8vQ1yAwAAADASHZZDnX3U+/grmN3sm4nOWW1oQAAAADYO3ZZDgEAwO4485kXjLq9U159zKjb AwBub9VXKwMAAABgcZk5BAAAAHyHB5/94FG3d9mJl426PcZj5hAAAADAhCmHAAAAACZMOQQAAAAw YcohAAAAgAlTDgEAAABMmHIIAAAAYMKUQwAAAAATphwCAAAAmDDlEAAAAMCEKYcAAAAAJmzDvAPA ndl2xJGjbu/IK7eNuj0AAABYdGYOAQAAAEyYcggAAABgwpRDAAAAABOmHAIAAACYMOUQAAAAwIS5 WhkAAADAGjnzmReMvs1TXn3MqNszcwgAAABgwpRDAAAAABOmHAIAAACYMOUQAAAAwISt6oTUVXV1 kr9PckuSm7t7S1XdK8k7kmxOcnWSJ3X3V1cXEwAAAIC1MMbMoZ/s7qO6e8tw+9QkH+zuw5N8cLgN AAAAwDq0FoeVnZDk7GH57CSPX4PnAAAAAGAEqy2HOsmfV9XHq+rkYezg7r5+WP5SkoNX+RwAAAAA rJFVnXMoyT/t7uuq6j5JPlBVVy6/s7u7qnpnDxzKpJOT5H73u98qYwAAAACwJ1Y1c6i7rxs+35jk T5IcneSGqjokSYbPN97BY8/q7i3dvWXjxo2riQEAAADAHtrjcqiqvqeqvndpOclPJ7k8yXlJThxW OzHJuasNCQAAAMDaWM1hZQcn+ZOqWtrOW7v7/VX1sSTnVNVJSb6Y5EmrjwkAAADAWtjjcqi7P5/k x3Yy/ndJjl1NKAAAAAD2jrW4lD0AAAAAC0I5BAAAADBhyiEAAACACVMOAQAAAEyYcggAAABgwpRD AAAAABOmHAIAAACYMOUQAAAAwIQphwAAAAAmTDkEAAAAMGHKIQAAAIAJUw4BAAAATJhyCAAAAGDC lEMAAAAAE6YcAgAAAJgw5RAAAADAhCmHAAAAACZMOQQAAAAwYcohAAAAgAlTDgEAAABMmHIIAAAA YMKUQwAAAAATphwCAAAAmLA1K4eq6riq+kxVXVVVp67V8wAAAACw59akHKqq/ZKcmeSxSR6U5KlV 9aC1eC4AAAAA9txazRw6OslV3f357v7HJG9PcsIaPRcAAAAAe2ityqFDk1yz7Pa1wxgAAAAA60h1 9/gbrXpCkuO6+18Nt385yY9397OXrXNykpOHmz+c5DMjxzgoyZdH3ubYFiFjshg5ZRzPIuSUcTyL kFPG8SxCThnHswg5ZRzPIuSUcTyLkFPG8SxCThnHM3bOH+jujbtaacOIT7jcdUkOW3Z70zB2q+4+ K8lZa/T8qaqt3b1lrbY/hkXImCxGThnHswg5ZRzPIuSUcTyLkFPG8SxCThnHswg5ZRzPIuSUcTyL kFPG8cwr51odVvaxJIdX1f2r6ruSPCXJeWv0XAAAAADsoTWZOdTdN1fVs5P8WZL9kry+u69Yi+cC AAAAYM+t1WFl6e7zk5y/VttfgTU7ZG1Ei5AxWYycMo5nEXLKOJ5FyCnjeBYhp4zjWYScMo5nEXLK OJ5FyCnjeBYhp4zjmUvONTkhNQAAAACLYa3OOQQAAADAAlAOAQAAAEyYcggAAABgwvaZcqiqjqiq Y6vqHjuMHzevTDuqqqOr6uHD8oOq6jeq6nHzznVnqupN886wo6r68ar6vmH57lX1e1X1P6rqxVV1 wLzzJUlV/XpVHTbvHHemqr6rqp5WVY8Zbv9SVf2Xqjqlqvafd74lVfWDVfWbVfXyqnpZVT1z6d8f AGBqquo+886wr6iqe887A6wX+0Q5VFW/nuTcJM9JcnlVnbDs7v8wn1S3V1UvTPKKJK+qqv+Y5L8k +Z4kp1bV78413KCqztvh438k+YWl2/POt8zrk3xzWH55kgOSvHgYe8O8Qu3gD5JcXFUfrqpnVdXG eQfaiTckOT7Jc6vqzUmemOTiJA9P8tp5Blsy/Gy/OsndMst11ySHJbmoqh49x2iwkOxQjMPOBPNU VQdU1elVdWVVfaWq/q6qtg1jB84730pU1fvmnSFJquq+VfWqqjqzqu5dVadV1WVVdU5VHTLvfElS Vffa4ePeST5aVfesqnvNO9+S5W/ID/9HX1dVl1bVW6vq4HlmWzL8jBw0LG+pqs9n9nr9i1X1z+cc L0lSVZ+oqhdU1QPmneXODN+/C6vqv1XVYVX1gaq6qao+VlUPnXe+JKmqe1TV71fVFUO27VV1UVX9 yryzLamqDVX1jKp6//DzcmlVvW94M3yvv1m/T1ytrKouS/LI7v5GVW1O8s4kb+7ul1fVJ7t77v9B h4xHZbZz+6Ukm7r761V19yQXd/dD5hows19GST6dWTHQSSrJ25I8JUm6+y/nl+42VbWtu48clj/R 3Q9bdt8l3X3U/NLdmuOTSf5JksckeXKSn0vy8cy+n+/u7r+fY7wkSVVd2t0PqaoNSa5L8v3dfUtV VZJPrZP/k5clOWrI9d1Jzu/uR1fV/ZKcux5+tpPZi6Akz0/y+CT3yezn58bMSuvTu/trc4y3IlX1 vu5+7DrI8X2ZfS83JXlfd7912X2v7O5nzS3cbTnum+SFSb6d5N9n9sbELybZluS53X39HOPdaic7 DZXZ76GHZvb3/yt7P9XtVdVx3f3+YfmAJC/LrAi+PMm/7e4b5pkvme1MJPmj7v5yVW1Jck5m//b7 J3naOvrb+Ikk707ytu7+3Lzz7Mzw/ftPmf3NeX5mb/YcneRvkpzc3Z+cY7wks52JJL+d2c/0piT/ mORzSV7d3W+cY7RbVdWfJbkgydnd/aVh7L5JTkxybHf/9DzzLamqh93RXUne091zL1+q6v1J3pvZ G7a/lOQtSd6a2d/zx3T3CXfy8L2iqr6d5Is7DG9Kcm2S7u4f3PupvtPy1+RV9drM9ndek+QXkvzz 7n78PPMls9eV3f3gYfnCJL/d3R+rqh9K8tbu3jLfhElVfSHJu5I8KbPv4duSvKO7//dcg+2gqj6a 2WuhA5O8JLO/2e+sqmOT/GF3P3KuAZNU1blJ/iTJX2T2/fyeJG9P8oIk13X378wxXpKkqt6W5GtJ zs7sZzqZ/XyfmORe3f3kvZpnHymHrujuH1l2+x6ZFUSfTnLMeikLlnZkdyys1lGhcZckz03yuCS/ 1d2XVNXn18sfnSVV9d8zKwneUFVvSHJmd28dfrG/pbsfPueIOyut9k/y2CRPzezFxtxnElXV5Uke ltkvyr9N8gPd/ZWquluSTy4VcPM0lENbuvtbVXXPJB9Y+sNdVZd394/ON+GMF+rjqap3JflskouS /GqS/5fkl4b/A7f7uZqXRdiZSBZjh8LOxHgWYYfCzsQ4quoz3f3Du3vf3lZVtyT5y8z+xuzoEd19 970c6Tvs8Pr8b7v7fsvuWy+vz5+X5Kcye21+2TD2he6+/3yT3d4Ov89v971bR9/LbUke3N03V9VF 3f2IZffd+rt+nnb4Pj4qs32HX8jsDai3dfdZ88y3ZBc/O+tlcsanuvvHlt3+WHc/fNjn/XR3HzHH eEuZ/qa7f2h371srG/bmk62hG6rqqO6+JEmGGUQ/m9k7UnP/IR/8Y1V9d3d/M7MZJUlufaf02/OL dZvu/naSM4by5YyquiHr8//Iv0ry8qp6QZIvJ/nrqromyTXDfevB7V4Idff/S3JekvOGGTDrweuS XJlkvyS/m+S/12x67SMyeyG8Hrw2yceq6uIkj8rs8MHU7DC9uc96WGZzd794+cBQEr24qn51Tpl2 5mO54xfq6+VQhAd09y8Oy39as8NuL6iqn5tnqB0c3N1/nCRV9axl//Z/XFUnzTHXjn4rC7BDscyW ZTsPZ1TViXNNc5sNVbWhu29Ocvfu/liSdPffVNVd55xtua92928m+c1lOxSfGHaG1ssOxf7d/b4k qaoXd/c7k6S7P1hVfzTfaLfavGyG0MuGnYk/qKqnZ/am49zLoSRfrKrfzuwNiRuSpGaH7fxKZq+F 1ottSZ7R3Z/d8Y7hddt6sPwUGzueZ3O/vRnkjnT3S6vqHZn9Xrwms4J1Pb67f5+q+o3MXmN8X1VV 3zYLYb2cyuSVSc4fZoS+v6pentmMy2OSXDLXZDvR3R9O8uGqek5mf8+fnGQ9/C5Pkn+oqp/O7PQe XVWP7+4/rdnhebfMOduS/1NV/7S7PzK8jvxKMtvnraqdvRaeh69U1ROTvGvYF1+asPHEJF/d22HW 447/nnhakpuXDwwv4p5WVf91PpG+wz/r7m8lt5YwS/bPbHbButHd1yZ5YlUdn+Tr886zo+6+Kcmv 1Ozwk/tn9v/42vVw+MEydzgFcCgI5667zxhebKS7/3fNTj7+mCSv6e6PzjfdTM8ODf2LJEcmeWl3 XzmMb0/yz+Ya7va8UB/PXavqLku/J7v7RVV1XZK/SnKPO3/oXrPudyaShdmhsDOxBtbxDoWdiXE8 OcmpSf5y+FvTSW7I7E2oJ80z2A5Oyx3/HD9nL+a4M+dW1T26+xvd/YKlwap6YJLPzDHX7Sx7bf5z ST6QZL280bjca5J877B8dpKDkmwfZlKvi9+V3f3Hw6z0X0vyQ5ntQxye5E+T/OE8sy3zNzsOdPct Sd4/fKwXz8xsBui3k/xMkl+rqjdmdtjwv55jruV+LclrqurwJFckOSm59U3mM+cZbJmnZPbm95lV tXQaigOTXDjct1ftE4eVAczTcMjbqUlOyOycQ8ltL9RP7+693vzvTFU9Icll3f0dL3iXdtLmEGvH HC9J8ufd/Rc7jB+X5I+7+/D5JLtdlt9P8pLu/sYO4w/M7N/7CfNJdseGHYrfyWxWxH3nnWdJzS7W sNwru3tpZ+Il3f20eeTaUc1OgL98Z+KazHYmXj+8GTV3VfX27t7rLyR3R1X9WG7bmfi3mX1PT8yw M9Hd/2uO8ZIkVfWQzGatLu1M/OowS2xjkqd29yvmGnBQVUdkdpjoRct/F9Wy83itB0POQzM7v+a6 zLloGTMrUh/Q3Zevp4zJ4n0vZVydqjoyyfdnHeccMh6adfy7sqp+PLOS/3NJjkjyyMwOezt/r2dR DgGsnap6enevl6vo3aFFyCnj6tTsAghLOxTrNucSGcezCDll3K0cv57klMxmgx6V2Ynwzx3uWxfn ZksWI+cwu+7ZWd8Z1/33MfF9AEeVAAAD4klEQVS9HMsifB+TW7+Xz8rsFBXrMueCZHxhZuel3ZDZ rMCjk3wos1m/f9bdL9qreZRDAGundjhJ33q1CDllHM8i5JRxPIuQU8bdyrHur9KbLEZOGcezCDll HM8i5FygjOvmiub7yjmHAOamqi69o7uSHLw3s9yZRcgp43gWIaeM41mEnDKO5i5Lh0d099XDYY/v rKofyM4vODAvi5BTxvEsQk4Zx7MIORch483DOaW+WVWf6+6vJ0l3/9+aXXV2r1IOAazewZmdjG/H cwtVkrmfQ2OZRcgp43gWIaeM41mEnDKOYxGu0pssRk4Zx7MIOWUczyLkXISM6+qK5sohgNV7T5J7 LP3xWa6qPrT349yhRcgp43gWIaeM41mEnDKOYxGu0pssRk4Zx7MIOWUczyLkXISM6+qK5s45BAAA ADBhd5l3AAAAAADmRzkEAAAAMGHKIQCA3VBVV1fVQfPOAQAwFuUQAMAOqspFOwCAyVAOAQD7pKra XFVXVtVbqmpbVb2zqr57+cyfqtqydBWqqjqtqt5cVf8zyZurar+q+qOquryqLq2q5yzb/HOq6hNV dVlVHTE8/uiq+uuq+mRV/a+q+uFh/Eeq6qNVdcmwncOH8X+5bPy/VtV+e/UbBAAwUA4BAPuyH07y yu4+MsnXkzxrF+s/KMljuvupSU5OsjnJUd39kCRvWbbel7v7YUleleQ3h7Erkzyqux+a5N8n+Q/D +DOTvLy7j0qyJcm1VXVkkicn+Ylh/JYk/2JVXykAwB4yZRoA2Jdd093/c1j+b0l+fRfrn9fd/3dY fkySV3f3zUnS3V9Ztt67h88fT/ILw/IBSc4eZgZ1kv2H8b9O8rtVtSnJu7v7s1V1bJJ/kuRjVZUk d09y4558gQAAq6UcAgD2Zb2T2zfnttnTd9vh/v+zwu1+a/h8S257PfUHSS7s7p+vqs1JPpQk3f3W qro4yfFJzq+qZySpJGd39/NX+HwAAGvGYWUAwL7sflX1yGH5l5J8JMnVmc3aSZJfvJPHfiDJM5ZO Tl1V99rFcx2Q5Lph+VeWBqvqB5N8vrtfkeTcJA9J8sEkT6iq+yxtu6p+YIVfEwDAqJRDAMC+7DNJ TqmqbUnumdk5gn4vycuramtmM3/uyGuT/G2SS6vqU5mVS3fmJUn+Y1V9Mrefnf2kJJdX1SVJfjTJ m7r700lekOTPq+rSzIqoQ3b7qwMAGEF17zjbGgBg8Q2Hdr2nu390zlEAANY1M4cAAAAAJszMIQAA AIAJM3MIAAAAYMKUQwAAAAATphwCAAAAmDDlEAAAAMCEKYcAAAAAJkw5BAAAADBh/x9DUw8YocE1 agAAAABJRU5ErkJggg==”/>

Now that we have the total purchase value for each purchase ID, we can join this data back to the purchase DataFrame. For this, we perform a left join of the purchase values to the DataFrame on purchase. We further specify that the value of the right side should receive the suffix _total. If we take a look again at our total purchase values, we can see that the name of the Series is the following.

values.name

Output:

'value'

So if we join without specifying a suffix, Pandas will complain about a name collision. This is because both sides specify a column named value, which can obviously not be joined, since it is unclear which column should take precedence. Therefore, we need to have the right side column in the Series that we are joining change its name by using the suffix _total. Indicating that it is a total value in the name of course makes a lot of sense, since the column contains the total purchase values.

Let’s perform the actual join then 🚀

df.join(values, on='purchase', rsuffix='_total')

Output:

item_id date category value customer purchase value_total
0 2017-01-05 Magazine 18 5 4 377
1 2017-01-16 Beverage 70 7 26 213
2 2017-01-07 Food 72 1 29 329
97 2017-01-30 Beverage 41 6 4 377
98 2017-01-18 Magazine 84 10 3 398
99 2017-01-08 Food 12 4 13 241

As we have discussed before, we want to calculate the ratio of a single purchase item to the total purchase value. We therefore need to calculate value / value_total * 100 to retrieve the ratio as a percentage.

df.assign(
    value_pct=(
        df.value /
        df.join(
            values,
            on='purchase',
            rsuffix='_total',
        ).value_total *
        100
    )
).round(2)

Output:

item_id date category value customer purchase value_pct
0 2017-01-05 Magazine 18 5 4 4.77
1 2017-01-16 Beverage 70 7 26 32.86
2 2017-01-07 Food 72 1 29 21.88
97 2017-01-30 Beverage 41 6 4 10.88
98 2017-01-18 Magazine 84 10 3 21.11
99 2017-01-08 Food 12 4 13 4.98

To be honest, for a long time I thought that this was the only way to do it. At the same time I was more than concerned with how burdensome it is to join the values back to the original DataFrame.

Browsing through the Pandas documentation let me discover an extremely useful method, the .transform(). Time after time, aimlessly wandering through documentation has brought positive change into my humble life.

Using transform, we will simplify the above process and make the present an even more exciting time to be alive in.

  1. Transform to the Rescue

While .transform()’s API is fairly well documented, I could only find a few hints to what the use cases might be in the documentation.

Now I would like to present the perfect use case for .transform(). First, let’s take a look at what the method exactly returns. We will define a method that prints the value it receives and returns the same value.

def return_print(value):
    print(value)
    return value

We then use .transform() to apply this function on our DataFrame. To avoid the result from getting too long we only apply it to the category and value column. We will immediately see that the category column is evaluated twice, which seems strange. Read on to find out why.

df[['category', 'value']].transform(return_print)

Output:

item_id
0     Magazine
1     Beverage
2         Food
  ...   
97    Beverage
98    Magazine
99        Food
Name: category, Length: 100, dtype: object
item_id
0     Magazine
1     Beverage
2         Food
  ...   
97    Beverage
98    Magazine
99        Food
Name: category, Length: 100, dtype: object
item_id
0     18
1     70
2     72
..
97    41
98    84
99    12
Name: value, Length: 100, dtype: int64

Output:

item_id category value
0 Magazine 18
1 Beverage 70
2 Food 72
97 Beverage 41
98 Magazine 84
99 Food 12

It is interesting to see that Pandas executes return_print on the first column twice. Therefore, we also see it being printed twice. This is done for reasons of optimization: Pandas needs to find out which code path it can execute, as there is a fast and slow way of transforming ndarrays. Therefore, the first column is evaluated twice. As always, the documentation describes this mechanism quite well (look for the Warning section).

We can furthermore observe that the result is a completely unchanged DataFrame. This is reassuring and lets us understand the next example even better.

We would like to calculate the standard score for each value. The standard score of a value
x
is defined as



$$z=\frac{x - \mu}{\sigma}$$

where

We can quite simple express this as a .transform() call, by calculating

x - x.mean() / x.std()

where x denotes a column we are calculating the standard scores for. Since not every column is numerical, we limit ourselves to the value column and calculate standard scores for all purchase item values.

df.value.transform(
    lambda x: (x - x.mean()) / x.std()
).to_frame('value_standard_score')

Output:

item_id value_standard_score
0 -1.354992
1 0.643862
2 0.720741
97 -0.470884
98 1.182015
99 -1.585630

An observant reader will quickly notice that we could also perform the following calculation to retrieve the same result:

(
    (df.value - df.value.mean()) /
    df.value.std()
).to_frame('value_standard_score_alt')

Output:

item_id value_standard_score_alt
0 -1.354992
1 0.643862
2 0.720741
97 -0.470884
98 1.182015
99 -1.585630

That is absolutely correct. I can see both forms having their advantages and disadvantages. I see the advantage of using .transform() instead of operating on raw columns as the following:

Let’s take a look at an example for multiple transformations applied at the same time.

def standard_score(series):
    """Return standard score of Series."""
    return (series - series.mean()) / series.std()

def larger_median(series):
    """Return True for values larger than median in Series."""
    return series > series.median()

df.transform({
    'value': [
        standard_score,
        larger_median,
    ],
    'date': lambda ts: ts.day
})

Output:

value date
standard_score larger_median <lambda>
item_id
0 -1.354992 False 5
1 0.643862 True 16
2 0.720741 True 7
97 -0.470884 False 30
98 1.182015 True 18
99 -1.585630 False 8

While we have observed in a previous article that it is possible to assign names to function calls in .aggregate() to give result columns new names, it does not appear to be possible with transform.

So for example, we were able to do the following with a tuple:

df.aggregate({
    'value': [
        ('mean', lambda x: x.sum() - x.count()),
    ],
})

We were then able to retrieve a column named mean that will contain the result of the lambda, but we cannot do the same using .transform() unfortunately. So the following is not possible

df.value.transform({
    'value': [
        ('standard_score', lambda x: (x - x.mean()) / x.std()),
    ],
})

We would instead just be greeted by an irritated Exception telling us to reflect on our deeds.

Leaving that aside, I would like to show you how transform becomes really useful in the next section.

  1. The Problem, Solved

It turns out that .transform() can also be used in group by objects. So what would we like to do? Easy. We would like to calculate an aggregate value, similar to how it has already been possible using .aggregate(), and then join it back to the index of the original grouped by object. So, if we are calculating a sum for every group, we then add the result back to each index that corresponds to that group.

In the case of grouping by purchases and calculating a sum, we would be then adding the sum back to every purchase item. Then, we can easily look at one purchase item and know both the purchase item’s value, as well as the total purchase value.

Let’s try it out then, shall we?

ts = df.groupby('purchase').value.transform('sum')
ts.to_frame()

Output:

item_id value
0 377
1 213
2 329
97 377
98 398
99 241

As we can see above, instead of directly calling .transform() on our well-known and beloved DataFrame, we first group by the purchase ID column. Since we have approximately 30 purchases, we will create approximately 30 groups.

Then, for each group we calculate the sum in the .transform(‘sum’) call and directly join that value back to the index used before the .groupby() call.

We can now join that value back to our original DataFrame quite easily.

df.join(ts, rsuffix='_total')

Output:

item_id date category value customer purchase value_total
0 2017-01-05 Magazine 18 5 4 377
1 2017-01-16 Beverage 70 7 26 213
2 2017-01-07 Food 72 1 29 329
97 2017-01-30 Beverage 41 6 4 377
98 2017-01-18 Magazine 84 10 3 398
99 2017-01-08 Food 12 4 13 241

Even more exciting, we can perform the same calculation that we have performed before, and achieve what required an additional, unpleasant .join() before.

df.assign(
    value_pct=(
        df.value /
        ts *
        100
    )
).round(2)

Output:

item_id date category value customer purchase value_pct
0 2017-01-05 Magazine 18 5 4 4.77
1 2017-01-16 Beverage 70 7 26 32.86
2 2017-01-07 Food 72 1 29 21.88
97 2017-01-30 Beverage 41 6 4 10.88
98 2017-01-18 Magazine 84 10 3 21.11
99 2017-01-08 Food 12 4 13 4.98

That wasn’t so bad, was it? Let’s see what we can take away from today’s article

In the end, we were able to avoid one unpleasant .join() call and have made the intent behind our summation a lot clearer. And if you want to improve the comprehensibility of your IPython notebooks, clear intent, terseness and readability are king.

  1. Summary

With .transform() in our toolbox, we’ve acquired yet another useful tool for Data Analysis. It is always a delight to dig in the Pandas documentation to find out what other delights this great library has to offer. I hope to be able to write even more articles about obscure niches in the Pandas API and surprise you with one or two things that neither of us knew about.

So I would like to encourage you to stay tuned and go out, dig up some new Pandas DataFrame methods, and enjoy working with data.

Date created:
29 Dec 2017

You are more than welcome to share your thoughts via email